无人驾驶有哪些难题
发布时间:2024-07-08 点击:130
无人驾驶车已经开发出来了,国内首张自动驾驶卡车路测牌照也已经颁发,离无人驾驶实现普及化是又近了一步。但是在无人驾驶的开发上也是有许许多多的难题的。
比如传感系统,不得不承认现在无人车能出现很大程度上依赖传感器的进步。其实早在 80 年代美国就通过磁钉导航完成过很多无人驾驶的实验。他们在地下埋上磁钉,通过寻找磁钉的方式可以完成高速的巡航、并道、超车等一些列的实验。很明显,这种成本太高,只能作为实验。
后来传感器技术突飞猛进,却依然很难达标。比如天气环境恶劣时将严重影响传感器的精度,或者车辆前方有障碍,要判断障碍物是运动的还是静止的,至于车是停下来还是绕过去,可通过人工势场算法。这部分主要的难度是传感器识别障碍,在车辆运动的前提下,确定障碍的运动状态。也就是说你要在运动的坐标系下,计算另一个物体相对静坐标系的速度,并作出判断。
gps也是个问题。汽车行驶总要经过一些楼宇隧道吧,如果gps无法到达,就需要里程计 + 陀螺仪,俗称惯性导航单元。这套系统的原理就是:花钱越多,有效时间越久。
原因是里程计、陀螺仪都存在累积误差。要注意,误差是累计的,也就是说上一时刻是 0.5m 的误差,下一时刻指定大于 0.5m。因此要尽可能约束累积误差,使其数量级很低,那么就要上光纤陀螺。因为电子级的陀螺通常达不到这个精度要求,不知道挠性陀螺行不行,但是估计挠性陀螺和光纤陀螺造价差不多。
感知系统
感知系统主要包括雷达和摄像头。雷达又分为激光雷达、毫米波雷达、超声波雷达等类型。激光雷达又可以分为单线雷达、双线雷达、多线雷达等。
雷达的优势在于测算的精度非常高,探测距离远,当然成本也不低。但也有缺点,比如:激光雷达对雨雾的穿透能力受到限制、对黑颜色的汽车反射率有限;毫米波雷达对动物体反射不敏感;超声波雷达的感知距离与频率受限;摄像头本身靠可见光成像,在雨雾天、黑夜的灵敏度有所下降。
360 度多线激光雷达,用于检测周围障碍物,无人车需要能够感知周围环境,又不能像人一样单纯用眼睛完成,于是这玩意可以返回周围障碍物的距离,误差毫米级。
摄像头也分单目和双目,当然双目的要好一点啦。双目的原理与人眼相似。人眼能够感知物体的远近,是由于两只眼睛对同一个物体呈现的图像存在差异,或称“视差”。目标距离越远,视差越小;反之,视差越大。所以说双目系统对目标物体距离感知是一种绝对的测量,而非估算。
双目系统成本比较低,而且没有识别率的限制,因为从原理上无需先进行识别再进行测算,而是对所有障碍物直接进行测量,无需维护样本数据库,因为对于双目没有样本的概念。双目系统的缺点在于:计算量非常大,对计算单元的性能要求非常高,这使得产品化、小型化的难度较大。所以在芯片或fpga上解决双目的计算问题难度比较大。
国际上使用双目的研究机构或厂商,绝大多数是使用服务器来进行图像处理与计算的,也有部分将算法进行简化后,使用fpga进行处理,这就使效果受到较大程度影响,存在很多噪点与空洞,这对后续的计算不利,存在安全风险。
识别交通标识,如限速牌、红绿灯。这些通过视觉系统完成,难点主要在实时性和鲁棒性。要离线处理这些交通标志是很简单的,但是在无人车上需要能在有限的时间里识别出来,并且考虑道路中可能有的光线变化、遮挡等问题。
通过以上内容,我们可以知道无人驾驶开发面对了特别多的难题,但是我们统统都可以克服。所以说人类的大脑是特别聪明的。